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The generic bits

What the heavy lifting is
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Resource Management

• Proper destruction of dead objects

• Memory collection and management

• OS ‘object’ management (threads, files, 

signals, and suchlike things)
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OS independence

• The whole world isn’t uniform

• Provides an abstract interface to OS

• Allows transparent emulation of features 

not easily available

• Frees the programmer from having to worry 

about the grotty details
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Rich type systems

• Interpreter’s job to make complex data 

types behave like simple ones

• Easy extendibility requires a lot of work 

under the hood

• Makes non-traditional types easier for the 

programmer
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Dynamic behaviour changes

• Dynamic recompilation

• Dynamic type behaviour changes

• Makes classic optimizations somewhat 

difficult
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High-level programming concept 

support

• Closures

• Continuations

• Curried functions

• Runtime class and method autogeneration

• Matrix operations
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Safe execution

• Resource quotas

• External access restrictions

• Paranoid runtime control-flow checking

• Static checking possible, but very restrictive



The Parrot bits

How we’re doing the heavy lifting for 

Perl 6. (And Python, Ruby, and Scheme, 

though they don’t know it yet…)
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Parrot’s design goals

• Run perl code fast

• Portable

• Clean up the grotty bits

• A good base for perl’s language features

• Longevity of core design

• Multi-language capable
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We assume modern hardware

• Good-sized L1 & L2 caches

• Main memory access expensive

• Unpredictable branches expensive

• A reasonable number of CPU registers

• Lots of RAM handy
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Parrot’s a register machine

• Reduces memory load/stores

• Reduces by-name lookups of variables

• Translates well to modern hardware

• Avoids a lot of the common stack twiddling 

time wasters

• Can be treated as a large named temp cache 

for the register-phobic
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Simple and complex types native

• Native int, native float, strings, and PMCs

• PMCs are ‘everything else’

• Support for arbitrary-precision numbers

• Interface abstract to make adding new types 

easy

• Simple types basically builtin shortcuts for 

the optimizer
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Split DOD & GC

• We check for dead objects and collect 

memory in separate phases

• Memory tends to get chewed up faster than 

objects die

• Most objects don’t need to do anything 

when they die
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Easy extendability and 

embeddability

• Stable binary API

• Clean interface for extenders

• Simple and small interface for embedders

• Internal details hidden

• Embedders have control over the 

interpreter’s environment (I/O & %ENV)
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Portable

• Perl 5 runs (or has run) on 70+ platforms

• Support for many Unices, Win32, VMS, 

and Mac

• Everyone’s got something broken about 

them

• Not shooting for lowest common 

denominator
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High-level I/O model

• Async I/O everywhere

• Bulk read support

• Byte, line, and record access supported 

where appropriate

• All I/O can be run through filters

• Finally dump C’s stdio
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Language-specific features are 

generally abstract

• We don’t mandate variable types or 

behaviours

• We don’t mandate method dispatch

• Generic fallbacks provided

• Lets us punt on the design and put it off for 

later
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Sort of OO under the hood

• OO (of sorts--it’s still in C) where 

appropriate

• The whole world’s not OO

• Neither are any CPUs to speak of

• OO support semi-abstract

• We use it as an abstraction layer


