
The heavyweight parts of 
lightweight languages

LL1 Workshop

November 17, 2001



The generic bits

What the heavy lifting is



LL1 Workshop 3

Resource Management

• Proper destruction of dead objects

• Memory collection and management

• OS ‘object’ management (threads, files, 

signals, and suchlike things)



LL1 Workshop 4

OS independence

• The whole world isn’t uniform

• Provides an abstract interface to OS

• Allows transparent emulation of features 

not easily available

• Frees the programmer from having to worry 

about the grotty details



LL1 Workshop 5

Rich type systems

• Interpreter’s job to make complex data 

types behave like simple ones

• Easy extendibility requires a lot of work 

under the hood

• Makes non-traditional types easier for the 

programmer



LL1 Workshop 6

Dynamic behaviour changes

• Dynamic recompilation

• Dynamic type behaviour changes

• Makes classic optimizations somewhat 

difficult



LL1 Workshop 7

High-level programming concept 

support

• Closures

• Continuations

• Curried functions

• Runtime class and method autogeneration

• Matrix operations



LL1 Workshop 8

Safe execution

• Resource quotas

• External access restrictions

• Paranoid runtime control-flow checking

• Static checking possible, but very restrictive



The Parrot bits

How we’re doing the heavy lifting for 

Perl 6. (And Python, Ruby, and Scheme, 

though they don’t know it yet…)



LL1 Workshop 10

Parrot’s design goals

• Run perl code fast

• Portable

• Clean up the grotty bits

• A good base for perl’s language features

• Longevity of core design

• Multi-language capable



LL1 Workshop 11

We assume modern hardware

• Good-sized L1 & L2 caches

• Main memory access expensive

• Unpredictable branches expensive

• A reasonable number of CPU registers

• Lots of RAM handy



LL1 Workshop 12

Parrot’s a register machine

• Reduces memory load/stores

• Reduces by-name lookups of variables

• Translates well to modern hardware

• Avoids a lot of the common stack twiddling 

time wasters

• Can be treated as a large named temp cache 

for the register-phobic



LL1 Workshop 13

Simple and complex types native

• Native int, native float, strings, and PMCs

• PMCs are ‘everything else’

• Support for arbitrary-precision numbers

• Interface abstract to make adding new types 

easy

• Simple types basically builtin shortcuts for 

the optimizer



LL1 Workshop 14

Split DOD & GC

• We check for dead objects and collect 

memory in separate phases

• Memory tends to get chewed up faster than 

objects die

• Most objects don’t need to do anything 

when they die



LL1 Workshop 15

Easy extendability and 

embeddability

• Stable binary API

• Clean interface for extenders

• Simple and small interface for embedders

• Internal details hidden

• Embedders have control over the 

interpreter’s environment (I/O & %ENV)



LL1 Workshop 16

Portable

• Perl 5 runs (or has run) on 70+ platforms

• Support for many Unices, Win32, VMS, 

and Mac

• Everyone’s got something broken about 

them

• Not shooting for lowest common 

denominator



LL1 Workshop 17

High-level I/O model

• Async I/O everywhere

• Bulk read support

• Byte, line, and record access supported 

where appropriate

• All I/O can be run through filters

• Finally dump C’s stdio



LL1 Workshop 18

Language-specific features are 

generally abstract

• We don’t mandate variable types or 

behaviours

• We don’t mandate method dispatch

• Generic fallbacks provided

• Lets us punt on the design and put it off for 

later



LL1 Workshop 19

Sort of OO under the hood

• OO (of sorts--it’s still in C) where 

appropriate

• The whole world’s not OO

• Neither are any CPUs to speak of

• OO support semi-abstract

• We use it as an abstraction layer


