
1

Parrot in detail 1

Parrot
in

Detail

2

Parrot in detail 2

What is Parrot

• The interpreter for perl 6
• A multi-language virtual machine
• An April Fools joke gotten out of

hand

The joke was entirely Simon Cozens’ fault^Wresponsibility

3

Parrot in detail 3

VMs in a nutshell

• Platform independence
• Impedance matching
• High-level base platform
• Good target for one or more classes of

languages

VM == fake hardware. This isn’t anything new, we’ve been doing it for
decades.

4

Parrot in detail 4

Platform independence

• Allow emulation of missing platform
features

• Allows unified view of common but
differently implemented features

• Isolation of platform-specific underlying
code

Like async I/O, threads, event handling, large files…

5

Parrot in detail 5

Impedance matching

• Can be halfway between the hardware
and the software

• Provides another layer of abstraction
• Allows a smoother connection between

language and CPU

The closer your implementation platform is to what you’re implementing, the
easier it is and the less ‘friction’ there is between layers. Sometimes adding a
thunking layer is enough to make things a lot easier.
This is not unlike electronics, where you really want to match the impedence
of circuitry.

6

Parrot in detail 6

High-level base platform

• Provide single point of abstraction for
many things, like:
– Async I/O
– Threads
– Events
– Objects

It’s a lot easier to present a single known interface and have each platform
twiddle the bits they need to to implement that interface. Threads and async
I/O are two big examples of that.
Building events and objects into the underlying platform (at least as far as the
languages that use it are concerned) make language implementation easier and
facilitates interoperability between routines in different languages.

7

Parrot in detail 7

Good HLL target

• Provide features that map well to a class
of language constructs

• Reduce the “thought” load for compiler
writers

• Allow tasks to be better partitioned and
placed

8

Parrot in detail 8

Parrot from 10K
feet

Or: What Parrot looks like if you’re looking
down from the ISS

ISS is the international space station, for those who don’t know. (It ought to be
10K kilometers, really. Give or take a bit)

9

Parrot in detail 9

The architecture

Parser Compiler Optimizer Interpreter

Source

Frozen
Bytecode

AppleWorks doesn’t have arrows, but the structure’s still reasonably clear. The
connection to frozen bytecode’s two ways--the optimizer and interpreter can
either freeze it or load it

10

Parrot in detail 10

Parts and pieces

• Parser
• Compiler
• Optimizer
• Interpreter

11

Parrot in detail 11

Parser

• Turns source into an AST
•$a = $b + $c becomes

$a

$b $c

=

+

This is a combination of tokenizing and parsing, but parrot’s regex engine
(courtesy of the steroids recently introduced into Perl’s regexes) can act as a
parser as well as just a regex engine.

12

Parrot in detail 12

Overriding the Parser

• New tokens can be added
• Existing tokens can have their

meaning changed
• Entire languages can be swapped in

or out

Makes swapping in new languages on the fly a lot easier. Also makes
temporarily enhancing or overrriding parts of an existing language easier.

This is how lexically-overridden operators will be done--if + should be - for all
operations in a block, this is where you’d do it. (If you’re overriding only for a
single class, that’d be done elsewhere, in the class vtable)

13

Parrot in detail 13

Compiler

• Turns AST into bytecode

$a

$b $c

=

+ Becomes
findlex PT0, ‘$a’
findlex PT1, ‘$b’
findlex PT2, ‘$c’
add PT0, PT1, PT2

The PTx entries are temp PMC locations that the register coloring algorithm
will later allocate to real PMC registers. (And we do have a register coloring
algorithm now)

14

Parrot in detail 14

Compiler

• Like the parser, is overridable
• Essentially a fancy regex engine,

with some extras
• No optimizations done here

This is the place that the tree that the parser built up is transformed into
bytecode. Definitely very well traveled ground.

15

Parrot in detail 15

Adding to the compiler

{

node => DOUBLE_SLASH,

in => [P, P],

out => [P],

code => ‘ifdef PT1, 6

 assign PT0, PT2

 branch 4

 assign PT0, PT1’

}

It’ll probably look different than this does, this is just an example to give a feel
for what you might do.

16

Parrot in detail 16

Optimizer

• Takes AST and bytecode, and
produces better bytecode

• Levels will depends on how perl’s
invoked

• Works best with less uncertainty

Optimizing is… interesting. Alas, many of the languages that Parrot is well
suited for are horrid to optimize, as we’ll see.

17

Parrot in detail 17

Optimizing is difficult

• Lots of uncertainty at compile time
• Active data (tied/overloaded) kills

optimization
• Late code loading and creation

causes headaches

Perl, generally, is almost impossible to optimize. (But you already knew that) I
generally make it a point to note that, while as a language *implementor* it’s a
pain, as a language *user* I really like the features that make it tough to
optimize.

Optimization (really de-pessimization, but who’s quibbling?) is really cheating,
and we can only cheat when we know nobody can look. That’s not too often,
alas.

18

Parrot in detail 18

Optimizing is difficult

When can
$x = 0;

foreach (1..10000) {

$x++;

}

become
$x = 10000;

And the answer’s potentially never, of course. If $x is tied, overloaded, or
otherwise active we can’t do this.

19

Parrot in detail 19

Interpreter

• Bytecode comes in, and something
happens

• End destination for bytecode
• May not actually execute the

bytecode, but generally will

I make this point because the interpreter part of the picture may not interpret
anything. The next slide points out what might happen

20

Parrot in detail 20

Interpreter

• As final destination, may do other
things
• Save to disk
• Transform to an alternate form (JVM,

.NET)
• JIT
• Mock in iambic pentameter

Needless to say, “Damian!” is the first thing that someone pipes up when I hit
the final point. :)

21

Parrot in detail 21

Gory Details
More than you ever wanted to know about the

insides of Parrot
(And this is the short form)

And now on to the details of the pieces

22

Parrot in detail 22

Integer
registers

Double
registers

String
registers

PMC
registers

Call
Stack

Save
Stack

Globals

Globals

Globals

Lexicals

Lexicals

Lexicals

The internal architecture

Integer
Stack

It seems so innocuous… If this were a CPU diagram there’d be active
components here, like ALUs and FPUs. We don’t really have that.

23

Parrot in detail 23

Bytecode

• Precompiled form of your program
• Generally loaded from disk (though

not always)
• Not really bytes--series of 32-bit

integers
• Generally needs no transformation to

run

An interesting side note--because we have such a huge range of opcode
numbers, and because we have the capability to load in opcode functions as we
choose, and because the bytecode loader may do a transform and is pluggable,
we can run JVM and .NET code directly.

24

Parrot in detail 24

Running the code

• Simple loop
while (code) {

 code = op_func[*code](interpreter, code);

}

• Can be fancier
– Computed goto
– Switch
– TIL
– JIT

Error checking’s not here, of course. It should be, but it’s removed for
simplicity and slide space.

25

Parrot in detail 25

Opcode functions

• Opcode function table is lexically scoped
• Functions return the next opcode to run
• Most opcodes can throw an exception
• Opcode libraries can be loaded in on

demand
• Most opcodes overridable
• Bytecode loader is overridable

The core’s not 100% flexible--the core ops are fixed. Most everything else can
be overridden, though.

26

Parrot in detail 26

Fun tricks with dynamic
opcodes

• Load in rarely needed functions only when we
have to

• Allow piecemeal upgrading of a Parrot install
• We can be someone else cheaply

– JVM
– .NET
– Z machine
– Python
– Perl 5
– Ruby

Parrot *will* be able to run z machine games by the time we release, dammit!.
I have the data files for Lurking Horror, and I’m not afraid to use them!

27

Parrot in detail 27

Registers

• 4 Sets of 32: Integer, String, Float,
PMC

• Fast set of temporary locations
• All opcodes operate on registers

Note that the int, string, and float registers are mostly for internal use.

28

Parrot in detail 28

Stacks

• Seven stacks
• One per set of registers
• One generic stack
• One call stack
• One integer stack (For regexes)
• Stacks are segmented, and have no

size limit

Yes, we have stacks, gobs and gobs of stacks.

29

Parrot in detail 29

Strings

Flags
Encoding

Locale
Character Set

Length
String Data

There’s actually a bit more to strings, since we do COW for strings and
substrings, but this is it.

Locale’s sort of “language string came from” when we know it. We need this
for proper string sorting--different languages sort differently. “ll” or an
accented vowel sort differently depending on the language/locale the string
came from.

I usually make it a point to point out that software should bow to people, not
the other way around. I find it rather repulsive that people will change the rules
of their language to match the limitations of a computer program.

30

Parrot in detail 30

Strings

• Strings are encoding-neutral
• Strings are character set neutral
• Engine knows how to convert

between character sets
• Unicode is our fallback (and

sometimes pivot) set

While Perl 6 may be unicode all the way, Parrot is *not*. It doesn’t give a rip,
really, and won’t. There’s no real reason why it should, ultimately. We’ve a
slight bias towards unicode as a fallback, but unicode conversion’s lossy.

31

Parrot in detail 31

PMCs

Data pointer
Cache data

GC data
Sync

Flags
Vtable Pointer

Kinda small, isn’t it?

32

Parrot in detail 32

PMCs

• Parrot’s equivalent of perl 5’s
variables

• Tying, overloading, and magic all
rolled together

• Perl 5’s AV, HV, SV, and GV rolled
into one

And yet still faster than perl 5. Go figure. :)

Because of this architecture you pay for fancy features when accessing the
data that uses it, not the operators that might be overridden. Perl 5 checks
every variable for magic or tying on every access, and checks every variable to
see if it overloads an operator every time it performs an operation. Yech. Much
wasted time, there.

33

Parrot in detail 33

PMCs are more than they seem

• Lots of behaviour’s delegated to PMCs
• PMC structures are generally opaque to the VM
• Lots of the power and modularity of Parrot

comes from PMCs
• Engine doesn’t distinguish between scalar,

hash, and array variables at this level
• Done with the magic of vtables

PMCs are both wonderfully complex and nicely simplifying. They let us punt
on most variable actions and let the variable decide what to do, which is what
really should be done. We can have more special-case straight-line code that
way.

34

Parrot in detail 34

VTables

• Table of pointers to required functions
• Allows each variable to have a custom set

of functions to do required things
• Removes a lot of uncertainty from the

various functions which speed things up
• Allow very customized behaviour
• Most functions have keyed and non-

keyed versions

The third point’s important. Branches are *expensive* on most processors
these days, and each test’s a branch. Removing the tests speeds things up a lot.

35

Parrot in detail 35

Vtables

• Some example functions
name
type
clone
get_(integer|float|string|value)
set_(integer|float|string|value)
add, subtract, multiply, divide
call method
GC special methods

36

Parrot in detail 36

Aggregate PMCs

• All PMCs can potentially be treated
as aggregates

• All vtable entries have a _keyed
variant

• Up to vtable to decide what’s done if
an invalid key is passed

The engine cares remarkably little about whether a PMC is an aggregate or
not.

37

Parrot in detail 37

Keys for Aggregates

• Linked list of
key type
key value
next key

• Also plain unidimensional index
• Keys are inherently multidimensional
• Aggregate PMCs may consume multiple

keys
• Keys don’t count as references for GC

The structure may change, I’m not sure. Doing it this way means we can have
true multidimensional arrays/hashes/whatever.

38

Parrot in detail 38

Advantages of keys

• Multidimensional aggregates
• No-overhead tied hashes and arrays
• Allows potentially interesting tied

behavior

The potentially interesting tied behaviour is being able to tell whether you’re
calling @pid[$$]{time} or @pid[$$]{time}{user}, in case you care.

39

Parrot in detail 39

PMCs even hide aggregation

• @foo = @bar * @baz
Turns into

mul foo, bar, baz

Means that aggregate PMCs can do something interesting when treated as a
single thing. Matrix math, say.

40

Parrot in detail 40

Exceptions

• An exception handler may be put in
place at any time

• Exception handlers remember their state
(they capture a closure)

• Handlers may decline any exception
• Exceptions propagate outward
• Exception handlers may target specific

classes of exceptions

But they don’t resume, which is probably for the best. Allowing resumable
exceptions is a major pain.

41

Parrot in detail 41

Exception details

• Typed
Information
Warning
Severe
Fatal
We’re Doomed

• Classed
IO
Math

• Languaged
Perl
Ruby

Yes, exceptions will carry the language that was in effect when they were
thrown.

42

Parrot in detail 42

Throwing an Exception

• Any opfunc that returns 0 triggers an
exception

• The throw opcode also throws an
exception

• The exception itself is stored in the
interpreter

• Exceptions don’t cost, though setting an
exception handler does have some
expense

We generally use longjmp for exception throwing. We do a setjmp outside the
runloop (returning 0 exits the runloop, hence that is an exception too) and just
let it sit until we need it.

43

Parrot in detail 43

Memory and garbage

• Memory and structure allocation is a
huge pain

• Terribly error prone
• We have full knowledge of what’s

used if we choose to use it

Memory allocation’s a major waste of time. In more than one sense.

44

Parrot in detail 44

Arena Allocation of core
structures

• All PMCs and Strings are allocated
from arenas

• Makes allocation faster and more
memory efficient

• Allows us to trace all the core
structures as we need for GC and
DOD

45

Parrot in detail 45

Pool allocation of memory

• All ‘random’ chunks of memory are
allocated from memory pools

• Allocation is extremely fast,
typically five or six machine
instructions

• Free memory is handled by the
garbage collector

46

Parrot in detail 46

Garbage Collection

• Parrot has a tracing, compacting
garbage collector

• No reference counting
• Live objects are found by tracing

the root set

Circular references are OK now--we find those. And no, there’s no guarantee
of destruct order for objects with an active destructor. The destruction phase
can be overridden if you want to impose some sort of order, but that’s tricky.

47

Parrot in detail 47

Garbage Collection

• All memory must be pointed to by a
Buffer struct (A subset of a String)

• All Buffers must be pointed to by
PMCs or string registers

• All PMCs must be pointed to by
other PMCs or the root set

A bit restrictive, but it makes things easier. And easier tends to be faster.
Besides, it’s less work to lift what turns out to be an onerous restriction than to
put a restriction in place after the fact.

48

Parrot in detail 48

DOD and GC are separate

• DOD finds dead structures
• GC compacts memory
• Typically chew up more memory

than structures.

Since we’ve mutable strings, the third point is often very true for perl.

49

Parrot in detail 49

I/O

• Fully asynchronous I/O system by
default

• Synchronous overlays for easier
coding

• Perl 5/TCL/SysV style streams
• C’s STDIO is dead

Layering synchrony on an asynchronous system’s easy. Layering asynchrony
on a synchronous system’s a major pain in the neck.

The last point usually gets applause from folks who’ve had it inflicted on them
for any length of time.

50

Parrot in detail 50

I/O streams

• All streams can potentially be filtered
• No limit to the number of filters on a

stream
• Filters may run asynchronously, or in

their own threads
• Filters may be sources or sinks as need be

Yes, very Tcl-ish.

51

Parrot in detail 51

I/O Stream examples

• UTF8->UTF32 conversion
• EBCDIC->ShiftJIS conversion
• Auto-chomping
• Tee-style fanout
• GIF->PNG conversion

Or any number of things. Heck, you could treat an IO stream as just a black
box data morpher if you so chose.

52

Parrot in detail 52

Subs and sub calling

• Several sub types
– Regular subs
– Closures
– Co-routines
– Continuations

• Sub (and method) calls should be much
faster

• Caller-save scheme for easier tail-calls

Generally people have no idea what continuations are, or if they do it hurts to
remember.

53

Parrot in detail 53

Parrot has calling conventions

• One standard set
• All languages that want to interoperate

should use them
• Only use them for globally exposed

routines
• Terribly boring except when you don’t

have them

You don’t realize how nice standard calling conventions are until you don’t
have them. There’s nothing worse than having, say, three different Fortran
compilers for the same system that generate completely incompatible object
files because their calling conventions are all different.

54

Parrot in detail 54

Threads

• Three threading models
– Shared dependent
– Shared independent
– Completely independent

The ovals are variables and the squares are interpreters.

In the second and third diagrams, the interpreters are in separate threads and
run independently. The data shared in the middle is automatically locked on
access.

In the first example, the interpreters share everything, and only one runs at
once to avoid stepping on toes. Generally good for coroutines and such.

55

Parrot in detail 55

Parrot Languages

• BASIC
• Scheme
• Jako
• Miniperl
• Cola

And more coming, of course. The BASIC interpreter runs eliza and hunt the
wumpus.

56

Parrot in detail 56

Bragging rights

• We’re faster than Mono
On our life demo, we’re faster by a factor of 78.7
JITted, we’re only faster by a factor of 7.2

• We’re faster than perl
Between 3.8 and 7.9x faster without JIT
Between 4.3 and 238x faster with JIT

• Take these with a kilo or so of salt, as the benchmarks
are pretty trivial

The Mono folks have closed the gap a bit, and we’ve not benchmarked
Microsoft’s .NET because we don’t have any hardware to do it on properly.
(Simulations indicate Mono runs at about half the speed of MS’
implementation, but I don’t quote simulation numbers)

