
P
ythonC

on 10
2

Building a M
ulti-Language

Interpreter Engine

D
an Sugalski

PythonC
on 10

February 6, 2002

PythonC
on 10

P
ythonC

on 10
2

O
r....

PythonC
on 10

P
ythonC

on 10
2

A
ll your

Interpreter are
Belong to U

s!

PythonC
on 10

P
ythonC

on 10
2

O
ur languages of interest

•Python
•Perl
•Ruby
•Schem

e
•Tcl
•O

bjective C
 (A little)

PythonC
on 10

P
ythonC

on 10
2

G
eneral Interpreter Properties

W
hat interpreters, especially for
dynam

ic languages, provide

PythonC
on 10

P
ythonC

on 10
2

Resource M
anagem

ent
•Proper detection and destruction of
dead objects

•M
em

ory collection and m
anagem

ent
•O

S resource m
anagem

ent (threads,
files, signals, and suchlike things)

PythonC
on 10

P
ythonC

on 10
2

O
S Independence

•The w
hole w

orld isn’t uniform
•Provides an abstract interface to the
O

S
•Allow

 transparent em
ulation of

features not easily available
•Frees the program

m
er from

 having to
w

orry about platform
-specific details

•Though they can still be w
orried about

PythonC
on 10

P
ythonC

on 10
2

Rich type system
s

•Interpreter’s job to m
ake com

plex data
behave like sim

ple data
•Easy extendibilty here requires a lot of
w

ork under the hood
•M

akes non-traditional types easier for
the program

m
er to use

PythonC
on 10

P
ythonC

on 10
2

D
ynam

ic behaviour changes
•D

ynam
ic recom

pilation
•D

ynam
ic type behavior changes

•M
akes classic optim

izations som
ew

hat
difficult

PythonC
on 10

P
ythonC

on 10
2

H
igh-level program

m
ing

concept support
•C

losures
•C

ontinuations
•C

urried functions
•Runtim

e class and m
ethod

autogeneration
•M

atrix operationsPythonC
on 10

P
ythonC

on 10
2

Safe Execution
•Resource quotas
•External access restrictions
•Paranoid runtim

e control flow

checking
•Static checking is possible, but very
restrictive

PythonC
on 10

P
ythonC

on 10
2

Accom
odating Specificity

Everyone does the sam
e things

differently, m
ore or less

PythonC
on 10

P
ythonC

on 10
2

O
bject M

odels
•M

ildly different
•O

bject hierarchies differ
•Single/M

ultiple inheritance
•Per-object variables and m

ethods

PythonC
on 10

P
ythonC

on 10
2

Standard Libraries
•Every language has its ow

n
•N

o tw
o are exactly alike

•O
nly really an issue w

ith functions
provided by C

 routines

PythonC
on 10

P
ythonC

on 10
2

Syntax
•Significant differences betw

een
languages

•G
enerally just a parser issue

•M
ost significant issue for the

program
m

er
•Least significant (alm

ost) issue for the
interpreter

PythonC
on 10

P
ythonC

on 10
2

Extensions
•Extension interfaces run from

 horrid
(perl) to very nice (Ruby)

•U
sually tied tightly to the

im
plem

entation of the interpreter
•G

enerally not considered part of the
language

PythonC
on 10

P
ythonC

on 10
2

Sem
antics

•The easiest of the issues
•Sem

antic differences betw
een m

ost
languages of a class are trivial

•U
ltim

ately a m
atter of speed m

ore
than anything elsePythonC

on 10

P
ythonC

on 10
2

The Parrot Bits
•

H
ow

 Parrot does all this stuff

PythonC
on 10

P
ythonC

on 10
2

Parrot’s design goals
•Run perl code fast
•Portable
•C

lean up all the grotty bits
•A good base for perl’s language
features

•Longvevity of the core design
•M

ulti-language capable

PythonC
on 10

P
ythonC

on 10
2

W
e assum

e m
odern hardw

are
•G

ood-sized L1 and L2 caches
•M

ain m
em

ory access expensive
•U

npredictable branches expensive
•A reasonable num

ber of C
PU

 registers
•Lots of RAM

 handy

PythonC
on 10

P
ythonC

on 10
2

Parrot’s a register m
achine

•Reduces m
em

ory load/store
•Reduces by-nam

e lookups of variables
•Translates w

ell to m
odern hardw

are
•Avoids a lot of the com

m
on stack

tw
iddling tim

ew
asters

•C
an be treated as a large nam

ed tem
p

cache for the register-phobic

PythonC
on 10

P
ythonC

on 10
2

Sim
ple and com

plex types
•N

ative int, native float, string, and
PM

C
s

•PM
C

s are the “everything else” class
•Supports arbitrary-precision num

bers
•Interface abstract to m

ake adding new

types easy
•Sim

ple types are basically builtin
shortcuts for the optim

izer

PythonC
on 10

P
ythonC

on 10
2

Split D
O

D
 &

 G
C

•W
e check for dead objects and collect

m
em

ory in separate phases
•M

em
ory tends to get chew

ed up faster
than objects die

•M
ost objects don’t need to do

anything w
hen they die

PythonC
on 10

P
ythonC

on 10
2

Easy extendability and
em

beddability
•Stable binary API
•C

lean interface for extenders
•Sim

ple and sm
all interface for

em
bedders

•Internal details hidden
•Em

bedders have control over the
interpreter’s environm

ent. (IO
, EN

V,
com

m
and line args)

PythonC
on 10

P
ythonC

on 10
2

Portable
•Perl 5 runs (or has run) in 70+

platform

s
•Support for m

any U
nices, W

in32,
VM

S, and M
ac

•Every platform
 has som

ething broken
about it

•N
ot shooting for a low

est-com
m

on
denom

inator

PythonC
on 10

P
ythonC

on 10
2

H
igh-level I/O

 m
odel

•Async I/O
 everyw

here
•Bulk read support
•Byte, line, and record access
supported w

here appropriate
•All I/O

 can be run through filters
•Finally dum

p C
’s stdio

PythonC
on 10

P
ythonC

on 10
2

Language-specific features are
generally abstract

•W
e don’t m

andate variable types or
behaviours

•G
eneric fallbacks are provided

•Lets us punt on parts of the design and
put things off for later

PythonC
on 10

P
ythonC

on 10
2

Sort of O
O

 under the hood
•O

O
 (of sorts, it’s still all C

) w
here

appropriate
•The w

hole w
orld’s not O

O
•N

either are any C
PU

s to speak of
•O

O
 support sem

i-abstract
•U

sed as an abstraction layer

PythonC
on 10

P
ythonC

on 10
2

C
ross-language w

ith Parrot
H

ow
 to actually m

ake it w
ork

PythonC
on 10

P
ythonC

on 10
2

Variables
•Variable types know

 how
 to do things

•Variable code can be loaded on the fly
•O

perator overloading is generally
im

plem
ented via variable vtable

functions

PythonC
on 10

P
ythonC

on 10
2

O
pcode Libraries

•O
pcode libraries m

ay also be loaded
dynam

ically
•Languages m

ay define their ow
n oplibs

•Allow
s m

axim
um

 perform
ance for

language-specific code w
ith interpreter

flexibility

PythonC
on 10

P
ythonC

on 10
2

Pluggable parser
•Parser is general-purpose
•M

ay be overridden lexically
•H

as the full pow
er of the Parrot engine

to draw
 on

•Should be rather easier than Lex &

Yacc to w
ork w

ith
•If w

e can m
anage perl, everything else

is easy

PythonC
on 10

P
ythonC

on 10
2

Inter-language calling
conventions

•W
e don’t, and can’t, guarantee 100%

seam

lessness
•D

on’t guarantee object hierarchies
•Provide a thunking layer for autom

atic
type translations

•M
ake things w

ork at least as w
ell as

calling unspecialized C
 extensions,

usually better
PythonC

on 10

P
ythonC

on 10
2

Q
uestions?

PythonC
on 10

