Building a Multi-Language
Interpreter Engine

Dan Sugalski
PythonCon 10
February 6, 2002




PythonCon 10




All your
Interpreter are

Belong to Us!




Our languages of interest

-Python
-Perl
-Ruby

-Scheme

-Tcl
-Objective C (A little)




General Interpreter Properties

What interpreters, especially for
dynamic languages, provide

PythonCon 10




Resource Management

-Proper detection and destruction of

dead objects
-Memory collection and management

-OS resource management (threads,

files, signals, and suchlike things)

PythonCon 10




OS Independence

- The whole world isn’t uniform
-Provides an abstract interface to the

ON
-Allow transparent emulation of

features not easily available

-Frees the programmer from having to
worry about platform-specific details
-Though they can still be worried about

PythonCon 10




Rich type systems

-Interpreter’s job to make complex data

behave like simple data
-Easy extendibilty here requires a lot of
work under the hood

-Makes non-traditional types easier for
the programmer to use

PythonCon 10




Dynamic behaviour changes

-Dynamic recompilation
-Dynamic type behavior changes
-Makes classic optimizations somewhat

difficult




High-level programming
concept support

-Closures
-Continuations
-Curried functions

-Runtime class and method
autogeneration
-Matrix operations




Safe Execution

-Resource quotas
-External access restrictions
-Paranoid runtime control flow

checking

-Static checking is possible, but very
restrictive

PythonCon 10




Accomodating Specificity

Everyone does the same things
differently, more or less

PythonCon 10




Object Models

-Mildly different

-Object hierarchies differ
-Single/Multiple inheritance
-Per-object variables and methods

PythonCon 10




Standard Libraries

-Every language has its own

-No two are exactly alike

-Only really an issue with functions
provided by C routines

PythonCon 10




Syntax

-Significant differences between
languages

-Generally just a parser issue

-Most significant issue for the
programmer

-Least significant (almost) issue for the
Interpreter

PythonCon 10




Extensions

-Extension interfaces run from horrid
(perl) to very nice (Ruby)

-Usually tied tightly to the
implementation of the interpreter

-Generally not considered part of the
language

PythonCon 10




Semantics

- The easiest of the issues
-Semantic differences between most

anguages of a ¢
-Ultimately a ma

ass are trivial

ter of speed more

than anything else

PythonCon 10




The Parrot Bits

How Parrot does all this stuff

PythonCon 10




Parrot’s design goals

-Run perl code fast

-Portable

-Clean up all the grotty bits

‘A good base for perl’s language

features
-Longvevity of the core design

-Multi-language capable

PythonCon 10



We assume modern hardware

-Good-sized L1 and L2 caches

-Main memory access expensive
-Unpredictable branches expensive

-A reasonable number of CPU registers

-Lots of RAM handy

PythonCon 10




Parrot’s a register machine

-Reduces memory load/store

-Reduces by-name lookups of variables
-Translates well to modern hardware
-Avoids a lot of the common stack
twiddling timewasters

-Can be treated as a large named temp
cache for the register-phobic

PythonCon 10




Simple and complex types

-Native int, native float, string, and
PMCs

-PMCs are the “everything else” class
-Supports arbitrary-precision numbers
-Interface abstract to make adding new
types easy

-Simple types are basically builtin
shortcuts for the optimizer

PythonCon 10




Split DOD & GC

-We check for dead objects and collect
memory in separate phases

-Memory tends to get chewed up faster
than objects die

-Most objects don’t need to do
anything when they die

PythonCon 10




Easy extendability and

embeddability

-Stable binary API
-Clean interface for extenders
-Simple and small interface for

embedders
‘Internal details hidden
-Embedders have control over the

interpreter’s environment. (10, ENV,
command line args)

PythonCon 10




Portable

-Perl 5 runs (or has run) in 70+

platforms
-Support for many Unices, Win32,

VMS, and Mac

-Every platform has something broken

about it
-Not shooting for a lowest-common

denominator

PythonCon 10




High-level 1/O model

-Async I/O everywhere

-Bulk read support

-Byte, line, and record access
supported where appropriate

-All 1/0O can be run through filters
-Finally dump C’s stdio

PythonCon 10



Language-specific features are
generally abstract

-‘We don’t mandate variable types or
behaviours

-Generic fallbacks are provided

-Lets us punt on parts of the design and
put things off for later

PythonCon 10




Sort of OO under the hood

-OO0O (of sorts, it’s still all C) where
appropriate

-The whole world’s not OO

‘Neither are any CPUs to speak of

-OO support semi-abstract
-Used as an abstraction layer

PythonCon 10




Cross-language with Parrot

How to actually make it work




Variables

-Variable types know how to do things
-Variable code can be loaded on the fly
-Operator overloading is generally
implemented via variable vtable

functions

PythonCon 10




Opcode Libraries

-Opcode libraries may also be loaded
dynamically

-Languages may define their own oplibs
-Allows maximum performance for

language-specific code with interpreter
flexibility

PythonCon 10




Pluggable parser

-Parser is general-purpose
-May be overridden lexically
-Has the full power of the Parrot engine

to draw on

-Should be rather easier than Lex &

Yacc to work with
-If we can manage perl, everything else

IS easy

PythonCon 10




Inter-language calling

conventions

-‘We don't, and can’t, guarantee 100%
seamlessness
-Don’t guarantee object hierarchies

-Provide a thunking layer for automatic
type translations

-Make things work at least as well as
calling unspecialized C extensions,
usually better

PythonCon 10




Questions!




